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ASYMPTOTIC EFFICIENCY
OF THE KOLMOGOROV - SMIRNOV TEST®

by
Jerome Klotz
University of Wisconsin at Madison

A simple derivation of asymptotic efficiency for
the Kolmogorov - Smirnov statistic is given and evaluated
for normal location and normal scale alternatives. Using
equal samples to simplify the derivation, the limiting
efficiency is obtained by letting the type I error « g to
zero while the type II error goes to 8, 0 <f <1, For
symmetric location alternatives, the efficlency is the same
as that obtained for the Mood and Brown median test.
Limits of relative efficiencies for alternatives which
approach the null hvpothesis are 2/w for normal location

femd iy
alternatives and m).l for normal scale alternatives.

I. INTRODUCTION

Let xl, Xyseeoy X be independent with cumulative distribution
function F(x) and let Yl, Yz, vooly Yn be independent with c.d.f. G’x).
To test the hypothesis of equality of F and G, the Kolmogorov - Smirnov

statistics
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D=syp | F (x)-G (x) |, and D*=syp (F_(x)- G (x))

where Pm and Gn are the sample c.d.f. s are often recommended.

In a recent article by Capon (5], bounds for limiting Pitman
efficiency were derived. The purpose of this paper is to extend the
asymptotic comparisons by emrloying a different limiting efficiency
as defined by Bahadur [3, p. 87).

With Pitman efficiency, the limiting ratio of sample sizes is
derived with sample sizes, critical values, and alternatives adjusted
so that both tests obtain limiting type I and type Il errors a, § with
0<a, f<1. For the exact Bahadur efficiency which we consider,
the altemative is kept fixed and critical values are adjusted so that
the type II error approaches f with 0 < f <1 and the type I error goes
to zero (at an exponential rate) with increasing sample size. The
exact Bahadur efficiency appears generally more informative than the
Pitman efficiency as it depends upon the alternative. For those cases
where both efficiencies have been computed, the exact Bahadur
efficiency ylelds the Pitman value as a limit when the alternative
approaches the nuil hypothesis. For example, see Bahadur [3] and
Klotz [ 8].

II. KOLMOGOROV - SMIRNOV COMPUTATIONS

For simplicity we restrict attention to the case of equal samples
m=n and the statistic D'. For alternatives F, G, we reject the

hypothesis F =G i D' > P, We firt show that the critical value
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P, converges to p where p = syp (F(x) - G(x)) in order to have
ﬂn=PF’G[D+§ Pn] - pf, with 0<f<]l, as n—= %,

We show by contradiction that p < Um inf Py s lim sup Pn = p.
Assume first that lim sup Pn > p. Under this assumption there exists

a subsequence {n'} for which Py = Umsupp >c>p and

+
By =PID S p,] 2P[p+U ,+V ,Sp,]

wich follows by writing

l’n-Gn = F-G+Pn--1“-i~G-Gn
so that
s&p (Fn(x)-Gn(x)) 3 p+Un+Vn.

Here U = s)t%p (Fn(x) -F(x)), V n = Sup (G(x)~- G n(x)), and p is given

above. Thus we nave the contradiction that

lin:png QIIY?P[U.+V.§C-P]=I
n n

Since c-p >0 and Un' E 0, Vn. = 0 by the Glevenko - Cantelll

g~

Lemma [9, p. 20]. We next show p = lm inf P, Assume the
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converse Mm inf P, < p and write

F-G=F -G +F-F +G -G
so that
p = Dnn + Wn + Zn
with
W, =syp (F(x)-F (x)), Z =sup (G, ()~ G(x)).

For & subsequence { n"} for which Pow ~ Uminfp <c<p (which

exists by our assumption) we have

Bw = P[DY s p .15 P[ P-(Wu+Z.) 5 pal

LY

= P[ wn“ +zn" g P - pn“] P[ Wn.. +Zn.. ; p - CIO

The contradiction follows from

. < }
lni{'n Pyu = l;rfxl’[wn..i-zn..zp c>0] =0

which is a consequence of Wn.., y/ 4 0 using the Glevenko -

nll
Cantelli Lemma again.
Next it is known (ses for example Hodgas [7]) that the principle

of reflection gives the null distribution for equal samples

@, = P[D">p,] = (2p, Vizg)
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Using 8tirlinds approximation in the combinatorials and considering

alternatives F,G for which 0 <p <1 we obtain using lim Pp =P

im -L na_ = @-p)in(1-p) + (14p) In (14p). (2.1)
n-.

I F and G have symmetric densitles with G(x) = F(x-4), then
p = 2F(A/2) - 1. For normal location aiternatives F(x) = &(x),

G(x) = ®(x - A) the expression (2.1) reduces to

2 ®(A/2) in 2 (A/2) + 2 ¥(-A/2) In 2 &(-A/2) (2. 2)

Similarly for narmal scale alternatives F(x) = ®(x/), Gix)= ®(x/71)

if we denote 6 = /0 with 6 >1 we have

p = w(ef_ﬂ)- g AT (2. 3)
0%- 1 6%-1

III. PARAMETRIC COMPUTATIONS

For the case of normal shift alternatives, the appropriate para-
metric test for comparison with the Kolmogorov - Smirnov test is the

two sample t test. With equal samples, we reject if

t=fa'(§-:'c)/8>c
2 n

where

n n
82 = [ Z(x -%F + Z(y;-y)]/(2n-2)
i=1 i=l

& ;.4? ye!
-
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In order for the type 1l error Bn to converge to B with 0<g<1]

it it sufficient that the critical value satisfy Cn = ,_g A+W for
2
altematives F(x)= ®(x-A), This is shown by writing

by = PLB v -21/s <o = pfB G-0r< (fF a4 ws)
= P[g@-i- A) </%_A(s-1)+ws1

= f°° ®(

NI:!|

Afs-1) + Ws) d Fg(s) (3.1)

If we denote the random variable U =2 Nn (S-1) then we know

Un has a limiting norimal distribution. Changing variables and using

the Helly Bray theorem [9, p. 182] the expression (3.1) becomes

B = [P o swa+S—))dF, () ~ B
n lo "yg Zn” Un)

where

A
B o= J G(B-V% +W)d®u) and 0<P<l,

We next show

-1 4
lim -1 loga, = logll + (37

(3. 2)
With the critical value Cn =

2

A + W we have under the null
hypothesis




%h l:'[th--z>Cn]

e ——ii(em-1)/2) |
NZn-2)® I((2n-3)/2) f: (14 5 tz_(z” 1y/2

C 2
. 2n=2 -(2n-3)/2
s G4y o k)
(2n-2) c? -, o,
= Y Nn=-
- B3Ny 4 ) EEEIC I Rys

where
2 2n-3
c.! -=%3)

< ‘zn"‘z ! 1 ?n"z )
Zn 2 *

IR |2 sy T O+ TN RS

n
The expression (3. 3) is obtained by using two varms in the mills
ratio expansion for the t-distribution derived by Plnkham and Wilk
{1]. Thus the expression (3. 2) follows by substituting J%T A+W
for Cn in (3. 3) and taking the iimit.

For normal scale alternatives the parameuwic test used for
comparison is the F test for variances based upon the statistic
Sy’/ Sx‘. For the comparisons under normality one might suppose
that a better test could be found which takes advantage of the equal-
ity of the means. Equality of means is imposed for scale alternatives
so that F = G as required for the Kolmogorov - Smirmov null distri-
bution when o =7, However, even if the means were known there
would be a gain of at most one degree of freedom for the optimal
statistic in the numerator and denominator and the asymptotic results
would be the same,
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For the F statistic, if we denote the critical value by dn we

must have d_ = 6%as n - © {in order tnat B, = P with 9<p<l,

We have
S 3/.,8
Py = Pl Syt/sxa s dn] = P[#; = dn/ez]
x
= Pl IEn—l,n-l’ = dn/ o%]
5 P[-P-E:} ‘l--ﬁi_li < i/ez -(n—l)/(n-3)

4(n-2) 4(n-2)
(n=3)n=-5) J (n-3)}n-5)
Using the normal approximation, ﬂn - f provided

d /e*- (a-1Y(n-3) , . a~kp),
4(n-2)
J (n=-3)(n-5)

so that d -~ 82. We now show that for fixed 6 and the above

condition we have

im -4 loga = log{1+e?Y/20). (2.4)

Transforming the F distribution to the incomplete beta, (See for
example [1, p. 946]) we have under the null hypothesis

.n=1
a, = P[82/8}>4 ] = o2l fox“ [u-u) 2 ~! du




where

(n-1) PR |
S T W T I < 1/2 for 8>1.

Since u(l-u) is an increasing function on the interval (0, 1/2) we have

-1
a —(@-[xnux)]nz 1L’S“m (3.5)

Also 0<1-2u<xl] for 0<u<l/2 so that

n-l
a 2 r‘;‘_ll fx“[uu af € " !i1-2u)du
©eE)
n-1
-lf-:ﬁ:}-l [x,0-x )2 225 (3.6)

Using Stirling's approximation to the gamma functions in (3.5) and
(3.6) and x_ - 1/(1+6%) we derive (3.4),

IV. RELATIVE EFFICIENCIES

According to Section II (2.1), for a fixed alternative and critical
values adjusted so that the type II error bn - p (0<P <1) wehave
the type I error for the Kolmogorov - Smirnov test going to zero at an

exponential rate with increasing sample size

a = e -nek[l + o(l)]
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where e is the number given on the r.h. s, of (2.1). Similarly

for the parametric tests based upon samples of size n* we have
' -n*e*{1 +o(1

where the¢ axponants e* are given by (3.2)and (3.4) for the t

and F tests. Adjusting sample sizes so as to equate errors we have
n¥*e*{(1+o(l)) = nek(l+o(l)).

Thus lm n*/n = ek/e* is a limiting efficiency-
n->

For normal location alternatives the efficiency relative to the
t-test is given by the ratio of (2.2) and (3.2)

Ay = 2808/2)In2 8(8/2) + 2 8(-A/2)In2 8(-A/2)
°,t (&) = :
‘ In (1 +(a/2)%) :

(4.1)

The expression 4.1 is the same as that cbtained for the two sample
Mood and Brown median test relative to the two sample t for equal
samples and is also the same as that given by Bahadur [3, p. 88)
for the sign test relative to the one sample t (with 6 replaced by
A/2). The limit of °k, t(A) as A- 0 is 2/% which is the lower
bound derived by Capon for the Pitman efficiency. It is thus con-
jectured that the Pitman limit is 2/= = 637,

For normal scale alternatives the efficiency relative to the F

test is given by




3 ‘-t}m_

]

i w

1’.-.—-... B SR s Y SaSm S Sy G IR TR mrw o amn w ¥

]

3

¥

i
1

0
;
;
]
{ .
“F i -
i
i
[}
5
[}
13
A}
A
)
'
\
|
A...)& g g e D e T R S -
o, - o R & - .- .




T

-1 -

_ (-p)in(i-p)+ (1+p)in(l+
ey, r (9 1nf(1+cﬁ")'fzjel' = : 2)

where 6 = /0 and

21n6 o( [2I58

p= 26 for_7) - of-1 *

The limit of ek,F(e) as 0~1 !s (w:)'l = ,117 which is the same

number obtained by Capon as a lower bound for the Pitman efficiency
and by Bahadur (4] using an approximate definition of efficiency for
the one sample Kolmogorov test. It is similarly conjectured that

this is also the Pitman efficiency value. Tables I and II give values
for (4.1) and (4. 2).

Because of no convenient closed form expression for the
Kolmogorov - Smirnov null distribution with unequal samples, the
simple methods of this paper do not appear to extend to cover this
case and more complicated methods such as studied by Hoadley [6]
and Abrahamson [2] must be used. If the one sided tests are replaced
by the two sided tests the expressions (4. 1) and (4. 2) remain the same.

The small sample interpolated efficiency values of Milton
[10, p. 1I-32] for location seem to indicate that the limiting effici-
ency is approached by a decreasing sequence. The efficiencies
given there for equal samples of size 7 are in the neighborhood of
75%.
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Table ]
EFFICIENCY FOR NORMAL SHIFT ALTERNATIVES

A 0 .25 .50 .75 1l;,00 1l..,25 1,50 1,75 2,00
ey t(A’ .6366 .6393 ,6471 ,6591 .6742 ,6910 .7080 .7240 .7378
’

A 2.25 2.50 2,75 3,00 3.25 3.50 3.75 4,00
Sy t(A) . 7488 .7563 ,7600 ,7:99 ,7562 ,7491 ,7390 , 7265
’

A 4.25 4,50 4.75 5,00 5,25 5.50 5.75 6,00 ®
e, t(A) . 7120 .6960 .6791 ,6617 ,6441 ,6267 ,6096 .5931 0O
’

Table I
EFFICIENCY FOR NORMAL SCALLE ALTERNATIVES

0 1. 00 1,125 1,250 1, 375 1.500 1. 625
© F(6) L1171 . 1171 . 1172 . 1172 . 1172 . 1172
’

e 1,750 1.825 2. 000 2,125 2.250 2.375
ek,F(G) . 1172 . 1172 . 1172 . 1171 . 1170 . 1169

e 2.500 2,625 2.750 2.825 3. 00 ®
ek,F(B) . 1167 + 1165 . 1164 . 1162 . 1160 0




